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ABSTRACT

Recently, machine learning techniques have been put into practice in

precisely characterizing various dynamical properties or phenomena. Here

we make use of supervised machine learning algorithms for the model-free

prediction of factors determining or controlling the intensity of symme-

try breaking phenomena emergent in different network architectures. In

an attempt to achieve this, chimera states (solitary states) are engineered

by establishing delays in the neighboring links of a node (the interlayer

links) in a 2-D lattice (multiplex network) of oscillators. Different machine

learning classifiers, K-Nearest Neighbours (Knn), Support Vector Machine

(SVM) and Multi-Layer Perceptron Neural Network (MLP-NN) are then

employed, feeding on the data obtained from mentioned models, for the

prediction of intensity of rippling chimera states and critical delay to char-

acterize solitary states. It is revealed from our analysis that Multi-Layer

Perceptron Neural Network (MLP-NN) classifier is best suited for the char-

acterization of the engineered chimera and solitary states. We hope that

our successful attempt in characterizing a class of partially synchronized

states using machine learning techniques would be useful in broadening

the scope of model-free machine learning techniques in characterizing other

phase states as well.
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Chapter 1

Introduction

Studying complex real world systems has been a challenge for us for a long

time. Network science gained popularity among scientists over the years

because it has proven to be an effective way of studying complex systems.

The tools of network science allow us to model a complex system using

simple components such as nodes and links and the interactions between

these nodes and links which lead to collective behaviour in such systems.

The real world interactions between the nodes can be mimicked by putting

an oscillator on each of the nodes such that they interact with eachother

depending on the network structure. Network science has wide applications

and has helped us in understanding vast varieties of complex systems found

in nature belonging to different disciplines of sciences ranging from biology,

physics, sociology, economics etc[1, 2].

1.1 Networks

In read world nothing acts like an isolated system. No real world system

is isolated in nature. Real world systems are interconnected and changes

in one system affects the time evolution and dynamics of another system.

Therefore, it is necessary to study different systems together as connected

units. All the connected systems all together through their interactions

show collective behaviours. This collective behavior might be very different

from what we might expect from time evolution of an isolated system.

To facilitate this connected dynamical evolution of systems, networks

1



came in forefront. While constructing a network we represent each isolated

system as a node(or vertex) and the interactions between these systems

is represented by links(or edges). So a single network can give us the full

picture of how a collection of different systems are connected with eachother

and how they affect eachother while evolving in time. Mathematically, we

represent and study networks using graphs.[14] One of the most popular

way to represent a graph or a network is through it’s adjacency matrix(Aij).

The elements of this adjacency matrix is defined as aij=1 if ith and jth nodes

are connected and aij=0 otherwise.

Aij =

1 if i-j,

0 otherwise

1.2 Kuramoto Oscillators

To mimick and study the overall dynamics and time evolution of a complex

system that we have represented by a network, we put coupled oscillators

on each node of the network. The oscillators at each node are coupled with

each other depending on whether two nodes have a link between them or

not. If two nodes have link between them then oscillators on each node

will be coupled with each other.

Kuromoto model is one of the many oscillator models that are used

for this purpose[11]. Even though kuromoto model is a very simple model,

it has the capability to explain very complex dynamical phenomenons. The

emergence of chimera was also first reported using kuromoto model[15][16].

In kuromoto model, the collective state of a complex system is de-

fined in terms of phase(θ) of all the nodes present in a network. So

Θ=[θ1,θ2,θ3,....] represents the dynamical state of a complex system at

a particular time. The phases of the nodes evolve in time according to the

equation,

dθi(t)

dt
= ωi + κ

N∑
j=1

Aij sin (θj(t)− θi(t)) (1.1)

2



Here, N is the total number of nodes present in the network. θi is

the phase of the ith node. ωi is the natural frequency of the ith oscillators

in our network. κ is the coupling constant. Aij is the adjacency matrix of

our network.

1.3 Synchronization

Synchronization is one of the collective behaviours that is exhibited by

complex networks. A complex network is said to be synchronized when all

of the oscillators in that network lock into a common frequency. A network

of oscillators having similar natural frequency and a network of oscillators

have different natural frequencies, both can show collective behavior of

synchronization[11].

We observe synchronization in wide varieties of real world complex

systems and networks. In physics we see synchronization in a arrays of

lasers[27, 28], Josephson junctions[29, 30], microwave oscillators[31] etc.

Biological examples of synchronization behaviour includes, synchronous

flashing of fireflies[32, 33], pacemaker cells in heart[34, 35] etc.

A system of oscillators which are synchronized with each other is also

called a coherent system.

1.4 Chimera

Kuramoto and Battogtokh, in 2002, discovered a fascinating new phenom-

ena that a system of identical Kuramoto oscillators breakup into two differ-

ent groups based on their synchronous properties[3]. Later, Strogatz and

Abrams named this new emergent collective behaviour of the system of

oscillators as Chimera state[4].

The study of emergence of a collective behaviour in a network is very

important and it holds a key to understand the complex system which

the network represents. The emergence of chimeric behaviour deserves a

special attention since chimera states has been found in many real world

complex systems such as brain[5, 6], meta-materials[7] etc.

3



Scientists have found many types of special chimera patterns and

named them as Virtual chimera[8], Travelling chimera[9], Breathing chimera[10]

and many more. In our work, we too found a unique chimera pattern and

we named it Rippling Chimera.

Chimera states have been found in various dynamical models such

as Stuart-Landua[37, 38], Chaotic oscillators[39], Van-der Pol oscillators[?]

etc.

1.5 Machine learning

Recently, a plethora of articles have been published exploiting machine

learning techniques as a tool for the prediction of possible outcomes, sys-

tem properties or emergent phenomena covering a broad area of interdisci-

plinary research, which ranges from non-linear dynamics, quantum physics,

astrophysics to bio-medics [20, 19]. The fields of complex systems and non-

linear dynamics have also witnessed a recent spurt in the use of machine

learning techniques in the characterization or identification of a variety of

system properties or behavior or phenomena. For instance, the machine

learning algorithms have successfully been implemented in community de-

tection in networks [21], finding fixed points attractors [22], spatiotemporal

chaotic systems [23], detecting phase transition [24], prediction of chaotic

systems [25] and identification of chimera states [26].

We have used three different supervised machine learning algorithms

in the next sections. Those machine algorithms are K-Nearest Neigh-

bours(Knn) classifier, Support Vector Machine(SVM) classifier and Multi

Layer Perceptron Neural Network(MLP-NN) classifier.

Knn classifier is a non-parametric classification algorithm which has

proven to be effective in numerous cases[18]. If we represent our data in

a vector space then each point in this vector space can be classified based

on the classes of k nearest neighbours of this data point. The k nearest

neighbours are chosen based on a distance parameter. Most commonly

euclidean distance is used to chose the k nearest neighbours. So Knn di-
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vides our data’s vector space in different regions corresponding to different

classes. The parameter k plays a very important role in deciding how well

Knn will perform while dividing the vector space in different regions and

classifying the points in that vector space.

SVM classifier is a supervised machine learning model. It works by

estimating the most appropriate hyperplane which can separate our train-

ing data into two different distinct classes. The hyperplane estimation is

done by maximizing the distance between nearest training data point and

the proposed hyperplane. This distance is also called margin. Simple SVM

can only produce linear hyperplanes. In order to estimate non linear hy-

perplanes one can use kernels. Kernel works by transforming our training

data from a lower dimensional space to a higher dimensional space and

then estimating a linear hyperplane in that higher dimensional space. On

transforming the higher dimensional hyperplane back to the lower dimen-

sion, we get a non-linear hyperplane which can classify each point of our

data’s vector space into different classes[17].

MLP-NN classifier works by creating an artificial neural network con-

sisting of many different layers of nodes. There are three types of layers in

a neural network. Those are input layer, hidden layer and the output layer.

We can have any number of hidden layers and each hidden layer can have

any number of nodes. The neural network takes in the input data and tries

to estimate the weights of each link between the nodes of this network. A

neural network can be called a trained model if the algorithm successfully

estimates the weights of the links such that the model can categorize our

data into their correct classes.

1.6 Organization of Thesis

This thesis and my project can be broadly divided into three parts. These

three parts are divided in such a way that it can show all the work I’ve

done in the past one year in a systematic and chronological order.

In the first part of my project I extended the earlier work done by Dr.
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Saptarishi Ghosh et al.[12]. Dr. Ghosh et al showed that a chimera state

can be engineered in a complex network by applying appropriate amount

of delay in few nodes of the network. They showed this phenomena in a

1D ring network. I extended this work by applying the same technique

on a 2D lattice network with periodic boundary condition. In doing so I

discovered a new kind of chimera which we named ”Rippling Chimera”. All

the results that I got while engineering and then studying rippling chimera

is shown in chapter 2 of this thesis.

In the second part of my project I developed a completely new and

unique technique to predict dynamical properties of a network using ma-

chine learning. Chapter 3 contains all the information about this technique

and all the results that I got after applying this technique on a 2D lattice

network is shown in this chapter. This technique is a completely novel idea

and the main highlight of this thesis.

In the third part I applied this new machine learning technique on

a completely different type of network(multiplex network) to see if this

technique can be used in different types of network architecture or not.

I performed this technique on a multiplex network to predict it’s critical

delay value. All the analysis and results done in this is shown in chapter 4.

Chapter 5 is for conclusions and future scope of this work.
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Chapter 2

Emergence of Chimera in 2D

Lattice Network

2.1 Introduction

Existence of Chimera state has been known and studied for a long time ever

since it was discovered in the year 2002. [3] The behaviour and origin of

Chimera states is well studied over the years. Now, the interesting question

that arises is that can we engineer or induce a chimera state in a network

according to our requirement. It has been shown that a chimera state can

be induced/engineered by adding delay to the nodes of a 1-Dimensional

periodic ring network[12]. We are using the ideas used in the previous

paper and applying it to a more complicated network structure.

Engineering chimera can have great applications in future. By engi-

neering chimera states in simple network structures and studying them we

can learn a lot about how we can control chimera states and then we can

extend this knowledge to more complicated and real world networks. This

can have many potential real world applications in future in fields including

but not limited to neuro-science and solid state physics.

2.2 Theoretical Framework

We studied the emergence of chimera using delay in a 2-Dimensional lat-

tice network with periodic boundary condition. The coupling between two

7



Figure 2.1: Schematic diagram of a 10x10 2-dimensional lattice network
with periodic boundary condition with N = 100. All the nodes here are
identical having exactly the same coupling architecture

connected nodes was modelled using Kuramoto oscillators. Equation 2.1

defines a Kuramoto model mathematically.

• Network description:

The network is of locally coupled identical Kuramoto oscillators ar-

ranged in a 2-Dimensional lattice with periodic boundary conditions

such that every node of the network had a degree 4. (See Fig(2.1))

A network of size N = 100 was used in this analysis. (See Fig(2.1c))

• Delay:

When a delay is introduced in a node of a network(say node x ) then

that means that the information that x receives from x ’s neighbours

will be delayed i.e x will receive the information from the nodes con-

nected to x after a finite amount of time instead of instantaneously.

The underlying equations which will determine the dynamics of this

system are,

dθi(t)

dt
= ω + κ

N∑
j=1

Aij sin (θj(t)− θi(t)) (2.1)
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dθi(t)

dt
= ω + κ

N∑
j=1

Aij sin (θj(t− τ)− θi(t)) (2.2)

Eq.(2.2) describes the dynamics of those nodes which have a delay τ

in them and Eq.(2.1) describers the dynamics of those nodes which

don’t have any delay.

Here, N is the total number of nodes present in the network. θi is the

phase of the ith node. ω is the natural frequency of all the identical

oscillators in our network. κ is the coupling constant. τ is the amount

of delay applied to a node. Aij is the adjacency matrix of our network.

• Order Parameter:

Order parameter is a measure of how coherent or incoherent a system

of oscillators are. Order parameter is used to identify if our system

of oscillators is synchronized or not. The order parameter is defined

as, [13]

reiψ =
1

N

N∑
j=1

eiθj (2.3)

A more simplified way to write this is,

r =
1

N

√√√√( N∑
j=1

cos θj

)2

+

(
N∑
j=1

sin θj

)2

(2.4)

Here, θj is the phase of the jth node and N is the total number of

nodes present in the network.

If all the oscillators are completely incoherent to each other then

in that case the value of order parameter(r) is zero and if all the

oscillators are completely synchronized with each other then the value

of r is 1.
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Figure 2.2: Coupling constant(κ) vs Order parameter(R) for 2-Dimensional
lattice network with total nodes, N = 100 and α = 0. This shows that the
critical coupling constant is around κc = 0.02.

2.3 Results

2.3.1 Finding the critical coupling constant

While examining the overall dynamics of the network without any delay it

was found that the coupling constant determines whether the whole net-

work will get synchronized or not. On plotting order parameter with respect

to coupling constant, the critical coupling constant was found. Critical cou-

pling constant is the value of coupling constant above which the system can

synchronize if it is allowed to evolve for sufficient amount of time. In all the

simulations done in future, the coupling constant was always taken such

that it is greater than the critical coupling constant.

In Fig(2.2) we can see that the order parameter with respect to the

coupling constant shows a 2nd order transition.

2.3.2 Engineering Chimera

We randomly assigned the initial phase to all the oscillators between the

interval [0,2π]. We then introduced a delay in the 45th node of our network

and observed the change in the dynamics of the system.
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Figure 2.3: Chimera obtained by introducing delay in a 2D lattice network.
(a) Shows a snapshot of Node index vs Phase(θ) and final frequency(θ̇) for
system without delay(N = 100,τ = 0,κ = 1).This plot shows that in the
absence of any delay all the oscillators synchronize. (b) shows a snapshot
of Node index vs Phase(θ) for system with delay in the links of the 45th

node (N = 100,τ = 10,κ = 1). This plot shows that there exists two kinds
of nodes in the system. Some are coherent and some are incoherent. This
indicates that we can engineer a chimera state by introducing a delay in
the links of one of the nodes in our network. (c) shows a snapshot of Node
index vs frequency(θ̇) for system with delay in the links of the 45th node
(N = 100,τ = 10,κ = 1).

On applying delay on one of the nodes(45th in our case) emergence

of chimera state was observed. The comparison between the final state of

the network with and without delay is shown in the Fig(2.3). The chimera

pattern obtained in this system resembles a ripple of wave and so we are

calling it ”Rippling Chimera”(Fig(2.3b,2.3c)).

We can see in the Fig(2.4) that on introducing a delay in the 45th

node we get a chimera state. The nodes near the delayed node are in a

incoherent state and the nodes which are far from the delayed node are

coherent to each other.

11



Figure 2.4: 2-Dimensional colour-grid representation of phases of a 2-
Dimensional lattice network with parameters, N = 100, κ = 1, τ = 10,
α = 0. The delay was introduced in the links of the 45th node. Each block
in this figure represents a node. The nodes nearer to the 45th node show
incoherence in phases. The nodes far from the 45th node are coherent with
each other. This whole system thus represents a chimera state.

2.3.3 Phase vs. Frequency diagram

Till now, we have managed to get a macroscopic overview of our system

and how the overall system changes when we introduce a delay in a 2-

dimensional lattice/network of oscillators. Now, we will look at the dy-

namics of the nodes more closely in order to get some microscopic infor-

mation about what’s happening with a single node in the system. One of

the questions we wish to answer in this section is that, how are the nodes

behaving individually and how the individual behaviour of different nodes

together result in a collective phenomena of a synchronized or a chimeric

state.

We plotted the phase portrait of some of the nodes to deduce the

overall behaviour of that node and to find out if that node has a stable

trajectory or not. If the node finally settles into a constant frequency and

all the other nodes also settle to the same constant frequency, we can say

that those nodes are coherent to each other. If a node’s trajectory suggests

that it cannot settle to a constant frequency and it follows a chaotic path

then we can conclude that the node is incoherent with respect to the other

nodes. If a system has a combination of such incoherent and coherent

nodes then we can conclude that the system is showing chimeric behaviour

12



and if the system has all coherent nodes then the system has achieved

synchronization.

We looked at the phase portraits of the node number 8 and 45(Refer

Fig(2.1) for node indexing) when there was no delay introduced in the

system and when there was a delay introduced at 45th node.

When delay is absent(τ=0):

We can see in the fig(2.5a,2.5c) that each of the nodes starts off from

their initial random phase and after some transition period, they settle

into a stable frequency line i.e their frequencies become constant. Both of

the nodes settle into the same constant frequency and so we can conclude

that these nodes are synchronized. Same behaviour was observed for all

the nodes in this system and so concluded that the whole network gets

synchronized when no delay is introduced in the network.

When delay is present(τ 6=0):

From the fig(2.5) we can observe that we get two categories of nodes

in this system after we let the system evolve for some time. Node 8 belongs

to the first category and is an example of synchronized nodes. These nodes

settle into a constant frequency just like in the case of non delayed system.

The two categories of nodes i.e coherent(ex-8th node) and incoherent(ex-

45th node) collectively form the chimera state in this system.

So we observed how a single delayed node can lead to a chimera

state. This shows that we can engineer a rippling chimera in a network

of oscillators arranged in a 2D lattice by introducing a delay in one of the

nodes.
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Figure 2.5: θ vs θ̇ for a single node in 2D lattice network. (a) θ vs θ̇ for
8th node when no delay was applied in the network (i=8, µ = 1, N = 100,
τ = 0). (b) θ vs θ̇ for 8th node when delay was applied in the links of the
45th node (i=8, µ = 1, N = 100, τ = 10). (c) θ vs θ̇ for 45th node when
no delay was applied. (i=45, µ = 1, N = 100, τ = 0) (d) θ vs θ̇ for 45th

node when delay was applied in the links of the 45th node (i=45, µ = 1,
N = 100, τ = 10). (e) θ vs θ̇ for 35th node when no delay was applied
(i=35, µ = 1, N = 100, τ = 0). (f) θ vs θ̇ for 35th node when delay was
applied in the links of the 45th node (i=35, µ = 1, N = 100, τ = 10). (a),
(c) and (e) shows that when no delay is applied then all the nodes settle
into a common frequency(here the common final frequency is 1) and we
can conclude that the system is synchronized. (b), (d) and (f) shows that
on introducing a delay in the links of the 45th node, the 45th node and the
nodes near to the 45th node for example node number 35, 46 etc. move
incoherently and the nodes which are far from the 45th node for example
node number 8, 87 etc move coherently(Refer Fig. 2.4). This shows that
two domains exist in this system i.e incoherent and coherent domains. This
concludes that introducing delay in the links of one of the nodes in a 2D
lattice network results in the emergence of Chimera state.
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Chapter 3

Machine Learning for

Predicting Complex Dynamics

3.1 Introduction

The network was allowed to evolve in time for many different values of

coupling constant and delay. In total 800 such simulations were carried out

and number of drifting oscillators at the end of each simulation was noted.

Phase diagram drawn using the raw data generated after the simulations

is shown in Fig(3.1).

Fig(3.1) shows that the data contains a lot of noise. This noise is

due to inaccuracies in the numerical simulations. By looking at the data,

only one boundary can be drawn with certainty as shown in Fig(3.2). This

diagram gives a good idea about synchronized and chimera state but it ig-

nores a lot of useful information that our data contains. The exact number

of drifting oscillators or the ”intensity” of chimera state can’t be identified

by looking at this diagram.

To construct a more detailed phase diagram machine learning tech-

niques were used.

3.2 Theoretical Framework

The algorithms of each machine learning algorithm that was used in this

analysis is shown in this section. Refer Table 3.1,3.2 and 3.3 for the algo-
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Figure 3.1: Phase diagram for 2D lattice network in two parameter space
of delay and coupling constant. This phase diagram was plotted using
the data that was directly obtained from the simulations. This is a filled
contour plot where each colour represents a different value of ”number of
drifting oscillators” found in the engineered chimera state in a 2D lattice
network. The colourbar at the right hand side shows number of drifting
oscillators corresponding to each colour in the diagram.

Figure 3.2: Phase diagram for 2D lattice network in two parameter space of
delay and coupling constant. This is a filtered version of Fig(3.1). Any non-
zero value of ”number of drifting oscillators” will mean that the network
is in a chimera state. So all the regions in Fig(3.1) with non-zero values of
”number of drifting oscillators” was combined in this diagram. Number of
drifting oscillators in blue region is zero and so it represents synchronized
state. Number of drifting oscillators in green region is non zero and so it
represents chimera state. This diagram is good at differentiating between
synchronization region and chimera region but it lacks information about
intensity of chimera for a given pair of delay and coupling constant.
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Table 3.1: k nearest neighbours
Algorithm for classification using Knn Model
X = M x n is a matrix which represents the features of data where
M is the total number of samples each of dimension n
Y = M x 1 is a column matrix representing the labels of the data
K represents the number of nearest neighbours to consider during
the training phase of the model.
1) Find the optimum value of K by using validation curve analysis.
While plotting validation curves use cross-validation of data and vary
K from 1 to some appropriately higher value of K.
2) Once the optimum K is known, split the data into two groups
randomly.
The bigger chunk of data should be used as training dataset and the
smaller chunk as the testing dataset.
3) Train a Knn model with optimum value of K using the training data
and test this model using the testing data.
4) Note down the training and testing accuracy of the trained model.
5) Predict the label of an unclassified data point using this trained
model.
6) Repeat steps 3,4 and 5 multiple times.
7) The mean of the accuracies of all the trained models will be our final
accuracy of the Knn model.
8) The most frequently predicted label for the unclassified data point will
be the final predicted label of that data point using Knn model.

rithms.

3.3 Results

3.3.1 Data

The data was arranged in three columns where column one contained cou-

pling constant values, column two contained delay values and column three

contained number of drifting oscillators corresponding to the pair of delay

and coupling constant in that row. The data structure looked like Table 1,

There were in total 800 rows in this table.

3.3.2 Machine learning algorithms used

The data was randomly split into training and testing set in the ratio of 4:1.

Parameter for Knn- Validation curve was plotted for Knn(Fig (3.3)) and it
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Table 3.2: Support Vector Machine
Algorithm for classification using SVM Model
X = M x n is a matrix which represents the features of data where
M is the total number of samples each of dimension n
Y = M x 1 is a column matrix representing the labels of the data.
1) Find the optimum value of the regularization parameter and gamma
by using grid search analysis for SVM when using rectified linear
unit(ReLU) kernel.
2) Once the optimum values of the two parameters are known, split the
data into two groups randomly.
The bigger chunk of data should be used as training dataset and the
smaller chunk as the testing dataset.
3) Train the SVM model with the optimum parameters using the training
dataset and test this model using the testing dataset.
4) Note down the training and testing accuracy of the trained model.
5) Predict the label of an unclassified data point using this trained model.
6) Repeat steps 3,4 and 5 multiple times.
7) The mean of the accuracies of all the trained models will be our final
accuracy of the SVM model.
8) The most frequently predicted label for the unclassified data point will
be the final predicted label of that data point using SVM model.

Table 3.3: Multi Layer Perceptron Neural Network
Algorithm for classification using MLP-NN Method
X = M x n is a matrix which represents the features of data where
M is the total number of samples each of dimension n
Y = M x 1 is a column matrix representing the labels of the data.
1) Split the data into two groups randomly.
The bigger chunk of data should be used as training dataset and the
smaller chunk as the testing dataset.
2) Train the MLP-NN model using the training dataset and test this
model using the testing dataset.
3) Note down the training and testing accuracy of the trained model.
4) Using experimentation determine the number of hidden layers and
number of nodes in each hidden layer which gives the best accuracy for
our dataset.
5) Once that is determined, train a model with the optimum number of
hidden layers and number of nodes.
6) Predict the label of an unclassified data point using this trained
model.
7) Note down the training and testing accuracy of the trained model.
8) Repeat steps 6,7 and 8 multiple times.
9) The mean of the accuracies of all the trained models will be our final
accuracy of the MLP-NN model.
10) The most frequently predicted label for the unclassified data point
will be the final predicted label of that data point using MLP-NN model.
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Table 3.4: Data structure for Rippling Chimera data

Coupling Constant Delay No. of Drifting Oscillators
: : :
: : :

0.875 0.5 0
0.875 0.6 9
0.875 0.7 13

: : :
1.1 1 21
1.1 2 21
: : :
: : :

showed that for the given data, k=5 will give the best possible results that

Knn is capable of giving us. So in the end, we created 1000 Knn models

with a different randomly chosen training set in each iteration and then

based our final prediction of number of drifting oscillators on the aggregate

of all these models.

Parameters for SVM- Using grid search module available in sklearn

package for python, we selected the following parameters for SVM. Ker-

nel=Radial Basis Function(rbf), Regularization parameter(’C’ in sklearn

module)=10, Gamma for rbf kernel=0.5 We then created 1000 SVM mod-

els with a different randomly chosen training set in each iteration and then

based our prediction of number of drifting oscillators on the aggregate of

all these models.

Parameters for the neural network are- Number of hidden layers=2,

Number of nodes in each hidden layer=30, Activation function=Rectified

Linear Unit(ReLU). We created 50 neural net models with a different ran-

domly chosen training set in each iteration and then based our prediction

of number of drifting oscillators on the aggregate of all these models.

It was observed that multi layer perceptron neural network algorithm

was the best in estimating a clear phase boundary for our system and thus

it was best in predicting the final intensity of the chimera state of the

system.
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Figure 3.3: Validation curve for Knn. 5 fold cross validation of data was
used while plotting these curves. The parameter K was varied from 1 to
20. Value of K at which a Knn model gives high training accuracy as well
as high validation accuracy is the optimum value of K for the dataset. k=1
is not a suitable fit because in that case the training accuracy is 1 but the
validation accuracy is very low. So k=1 will lead to overfitting. Using this
validation curve we can see that the best possible Knn model that we can
obtain for our dataset is at K=5. Blue line represents training set accuracy
and orange line represents validation set accuracy.

Table 3.5: Accuracy of different algorithms in percent

Algorithm Training Accuracy Testing Accuracy
Knn 85.449 77.66
SVM 85.455 80.821
Neural Network 83.012 82.725
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Figure 3.4: Phase diagram for 2D lattice network in two parameter space
of delay and coupling constant. Region boundaries in this diagram was
obtained using a trained Knn machine learning model. The value of pa-
rameter K=5 for training this model was obtained using validation curve
analysis(See Fig(3.3)).This is a filled contour plot where each colour rep-
resents a different value of ”number of drifting oscillators” found in the
engineered chimera state in a 2D lattice network. The colourbar at the
right hand side shows number of drifting oscillators corresponding to each
colour in the diagram.
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Figure 3.5: Phase diagram for 2D lattice network in two parameter space
of delay and coupling constant. Region boundaries in this diagram was
obtained using a trained SVM machine learning model. RBF kernal was
used while training this SVM model. The value of parameters C=10 and
gamma=0.5 was obtained used grid search analysis. This is a filled contour
plot where each colour represents a different value of ”number of drifting
oscillators” found in the engineered chimera state in a 2D lattice network.
The colourbar at the right hand side shows number of drifting oscillators
corresponding to each colour in the diagram.
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Figure 3.6: Phase diagram for 2D lattice network in two parameter space
of delay and coupling constant. Region boundaries in this diagram was
obtained using a trained MLP-NN machine learning model. ReLU acti-
vation function was used while training this MLP-NN model. Apart from
the input and output layer, the artificial neural network used in this model
contains 2 hidden layers with 30 nodes each. This is a filled contour plot
where each colour represents a different value of ”number of drifting os-
cillators” found in the engineered chimera state in a 2D lattice network.
The colourbar at the right hand side shows number of drifting oscillators
corresponding to each colour in the diagram.
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Chapter 4

Machine learning Technique

Applied on Multiplex Network

4.1 Introduction

To check the validity and the applicability of the machine learning devel-

oped in the previous chapter, it is important to test this technique on a

network which is structurally very different to the 2D lattice.

In this chapter, the same machine learning technique as previous

chapter was applied on a multiplex network of kuramoto oscillators. This

network is different from the previous 2D lattice network in many ways.

First and foremost the network structure of the two networks is completely

different. Secondly on applying delay multiplex networks show solitary

state instead of chimera state as observed in the case of 2D lattice. Third,

the number of parameters which determine whether a multiplex network

will be in synchronized state or in a solitary state is different to that of a

2D lattice network. In 2D lattice network coupling constant and delay i.e

two parameters determined whether the network will be in a synchronized

state or chimera state but in case of multiplex network, interlayer coupling

constant, intralayer coupling constant and delay i.e three parameters de-

termines whether the network will be in a synchronized state or solitary

state.

Multi layer perceptron neural network was used to train a machine
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Table 4.1: Data structure for Solitary data

Interlayer Coupling Intralayer Coupling Delay State
: : : :
: : : :

3.60 0.86 0.50 0
3.60 0.88 0.50 0
3.70 0.1 0.50 1

: : : :
2.00 0.20 2.00 1
2.00 0.22 2.00 0

: : : :
: : : :

learning model. Using this trained model exact value of the critical delay

can be calculated for any pair of inter and intra layer coupling constant.

4.2 Results

4.2.1 Data

The network was allowed to evolve in time for many different values of

inter and intra layer coupling constant. In total 1600 such simulations

were performed and the frequency difference between delayed node and

rest of the synchronized nodes was noted at the end of each simulation.

This was done for 5 different values of delay i.e 0,0.5,1,2,4. So the total

number of simulations that were performed was 8000.

The data was arranged in four columns where column one contained

interlayer coupling constant values, column two contained intralayer cou-

pling constant values, column three contained delay value and column four

contained 0 for synchronized state and 1 for solitary state. A system is

solitary or not was decided by looking at the frequency difference between

the excited(delayed) node and the synchronized node. If the frequency dif-

ference was more than 0.01 then the system’s state was classified to be in

solitary state. Here, 0.01 is called the threshold value for solitary state.

The data structure looked like Table 3,

There were 8000 rows in total in this table.
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Figure 4.1: This figure shows the critical delay as a function of in-
tralayer coupling constant for a multiplex network. Interlayer coupling
constant=2.81 and is a constant here. The values of critical delay has been
calculated using a trained MLP-NN machine learning model.

4.2.2 Machine learning model

Multi layer perceptron neural network was used for creating a prediction

model using our data. The data was randomly split into training and

testing set in the ratio of 4:1. Parameters for the neural network are-

Number of hidden layers=2, Number of nodes in each hidden layer=30,

Activation function=Rectified Linear Unit(ReLU). We created 50 neural

net models with a different randomly chosen training set in each iteration

and then averaged over the results of each model to get a final value of the

critical delay.

4.2.3 Critical delay for solitary state

4.2.4 Impact of threshold parameter

The impact of the frequency difference threshold set for differentiating soli-

tary state and synchronized state was also studied.(See Fig(4.4)) It was

observed that if the value of threshold frequency difference is low then

changing the threshold value doesnot have any significant effect on the

prediction of the critical delay but as soon as the threshold is changed to

a larger value such as value greater than 0.03 then the machine learning
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Figure 4.2: This figure shows the critical delay as a function of in-
tralayer coupling constant for a multiplex network. Interlayer coupling
constant=3.53 and is a constant here. The values of critical delay has been
calculated using a trained MLP-NN machine learning model..

Figure 4.3: Heatmap of intralayer coupling constant vs interlayer coupling
constant for a multiplex network. Colour of each block represents the value
of critical delay corresponding to inter and intra layer coupling constant
of that block. Here the critical delay values are calculated using a trained
MLP-NN machine learning model. The heatmap shows how the critical
delay varies with respect to an increase or decrease in the value of inter
and intra layer coupling constant. The colorbar on right represents the
value of critical delay corresponding to the colours in heatmap..
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Figure 4.4: This figure shows the critical delay as a function of in-
tralayer coupling constant for a multiplex network. Interlayer coupling
constant=3.82 and is a constant here. The different lines in the plot cor-
responds to different threshold values of frequency difference between the
excited node and the synchronized nodes which is used to identify if a given
state is solitary or not. The plot suggests that changing the threshold value
between 0.001 and 0.02 doesnot have any significant change in the predicted
value of the critical delay using machine learning model. Once the thresh-
old value exceeds 0.03, we start observing bad predictions by the machine
learning model.

model starts giving wrong predictions.
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Chapter 5

Conclusion and Future Scope

Applying delay on one of the nodes in a 2D lattice network can lead to

emergence of chimera state. This tells us that the technique used by Dr.

Ghosh et al[12] is valid not only for 1D ring network but also for higher

order network structures. We also observed that we can control the spread

of incoherent region in a rippling chimera by changing two parameters i.e

delay and coupling constant.

A new and novel machine learning technique to predict dynamical

features of a complex network was developed in this project. First it was

tested on 2D lattice network to predict intensity of chimera and to generate

more detailed phase space diagram for the network.

Then, the same machine learning technique was tested on a totally

different network structure i.e multiplex network. Here, the technique was

used to predict the exact value of critical coupling constant for a given

value of inter and intra layer coupling constant. It was observed that this

technique worked very well on this network structure too.

Getting good results in two completely different types of network

system gives a nod towards the validity and the applicability of this new

technique in diverse network systems.

It was observed that for predicting dynamical properties using dy-

namical parameter, MLP-NN is the best suited algorithm when compared

with Knn and SVM.
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5.1 Future Direction

It has been observed that in real world systems it is fairly uncommon to find

complete synchronization. Partial synchronization is much more common

than full synchronization in real world systems. For example, neurons

in brain network are more likely to show partial synchronized behaviour

than fully synchronized behaviour. Chimera has also been associated with

cognitive process in human brain network[41] and uni-hemispheric sleep

found in other mammals[42, 43]. So studying chimera states is of great

importance.

The technique used in this project to engineer a chimera state can

be applied to various other network structures. This particular project

can also be extended by performing the analysis shown in chapter 2 on

more complicated network structures such as 3D lattice network. Rippling

chimera can also be engineered on a 2D lattice network of bigger size and

any difference in properties due to change in network size can be studied

by that.

Since the machine learning technique shown in chapter 3 and 4 is a

completely new idea, it has a lot of potential to be explored in the future.

This technique can be used in many different types of network with different

network architecture. It can also be explored on systems with completely

different models such as Fitzhugh Nagumo model, coupled maps etc. This

method can potentially be used to predict numerous other dynamical prop-

erties of a system which were not shown in this thesis. The possibilities

with this technique are tremendous.

Apart from the applications, in future one can also work on improving

this technique and try other more complicated machine learning algorithms

to perform the same analysis that was performed in this thesis using Knn,

SVM and MLP-NN.
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