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1. Introduction 

Our universe contains many mysteries that humans haven’t solved yet. Every time we get a 

little closer to understanding our universe little bit better than before, our universe throws more 

questions and mysteries at us for us to solve. One of such mysteries is cosmic rays. 

Cosmic rays are very high energy radiation which mainly originates from outside our solar 

system or even milky way galaxy. The range of energies encompassed by cosmic rays is truly 

enormous, starting at about 107 eV and reaching 1020 eV for the most energetic cosmic ray ever 

detected. We still don’t understand everything about these cosmic rays. 

One of the ways by which we characterise and study properties of cosmic rays is with the help 

of the so-called cosmic ray spectrum. When we plot the range of energies against the number 

of cosmic rays detected at each energy(Flux) we generate a cosmic ray spectrum. 

 

Figure 1: The Cosmic ray spectrum. Credit-http://www.physics.utah.edu/~whanlon/spectrum.html 
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Looking at Figure 1, we can see that the number of cosmic rays drops off dramatically as we 

go to higher energies. The origin of these changes in the steepness of the spectrum is still the 

subject of intense study, but it is assumed that they distinguish between populations of cosmic 

rays originating via different mechanisms. 

Study of cosmic rays has been a challenging tasks for scientists for decades. Unlike radiation, 

cosmic rays contains very energetic particles such as protons etc. and these particles are very 

interactive with their surroundings unlike photons. A cosmic ray beam containing such 

energetic particles can easily change its path by interacting with magnetic or electric fields. 

Due to this we will get wrong data regarding the actual position of the cosmic ray source. 

Luckily, these cosmic rays emit radiations while they interact with their surroundings via non-

thermal radiative processes and by studying those emitted radiations that we receive on earth 

we can learn about the original cosmic ray beam. Therefore, studying those radiative processes 

is a very important part of high energy astrophysics. 

The difference between thermal and non-thermal radiative processes is that in the case of a 

non-thermal radiative process, the characteristics of the emitted radiation do not depend on the 

temperature of the source. Some of the non-thermal radiative processes is mentioned below- 

• The 21cm radiation due to the Hydrogen spin-flip transition 

• Gamma rays due to nuclear reactions 

• Synchrotron radiation 

• Radiation due to Bremsstrahlung  

• Inverse Compton process  

One thing to notice is the fact that it is not necessary that all x-rays and gamma rays that we 

receive are due to the non-radiative processes. The black body spectrum extends to infinity in 

terms of frequency, but the energy density becomes very low there. If an object is hot enough, 

thermal X-rays are still possible. So the deciding factor between thermal and non-thermal is 

not so much the wavelength of the photon, but its origin. 

Therefore, along with the quantitative properties of the high energy radiation that we receive 

on earth, it is very important to study the qualitative properties of those radiations such as the 

origin and the process by which that radiation is emitted. 

In this project, I have worked on understanding one of such qualitative aspects of high energy 

radiation. Understanding the origin and predicting few properties such as the power of the 

radiation by sources such as supernova remnants, pulsars, nebulas etc. is the main motivation 

behind this project. Synchrotron is one of the main and most common processes by which high 

energy radiations are emitted by it’s source. Examples of such sources include SNR, AGN, 

PWN etc. In this project, I have studied the synchrotron emission using basic electromagnetic 

approach. First I have developed the theory for finding the power emitted by an electron 

moving in a magnetic field which has both magnitude and direction constant. After this I have 

extended this theory to include such magnetic fields which have constant magnitude but 

random directions and finally I have calculated the power per unit frequency of the radiation 

emitted by electrons moving in a magnetic field which has both non-uniform magnitude and 

random direction. 

 



3 
 

1.1. Detection of astrophysical photons 

Any theoretical prediction should be accompanied by experimental data which can back that 

theory and confirm if the calculation based on that theory is right or wrong. There are many 

ways to detect and measure the amount of radiation that are being emitted by different celestial 

sources. 

1.1.1. Gamma ray detection 

On land we can’t directly measure the gamma rays from the sources as the gamma rays that 

are directed towards the earth interacts which the earth’s atmosphere and they interact with 

atoms in the atmosphere and produce ions by dislodging electrons from the atoms. These 

secondary ions and electrons rain down on earth. These secondary ions and particles can travel 

faster than the speed of light in that medium. Charged particles moving through the atmosphere 

with a velocity larger than the local speed of light (the vacuum speed of light divided by the 

refractive index of the air) emit Cherenkov light. The land based gamma ray detectors detect 

these secondary ions and electrons from earth’s atmosphere to study the initial gamma rays that 

are being bombarded on earth by faraway sources. 

One of such detectors is in India and is called TACTIC(TeV Atmospheric Cherenkov 

Telescope with Imaging Camera). It is equipped with a light collector and a medium resolution 

imaging camera of 349 pixels and has been in operation at Mt. Abu, India, since 2001(Yadav, 

Bhattacharyya, Bhatt, 2007). 

 

1.1.2. X-ray detection 

Similar to the gamma rays X-ray photons are absorbed by the earth’s atmosphere when it 

interacts with the atoms of our atmosphere. The energy of the X-ray goes into tearing one of 

the electrons away from its orbit around the nucleus of a nitrogen or an oxygen atom. This 

process is called photo-electric absorption. 

Due to this reason, most of the X-ray telescopes are space based. One of such telescopes is 

called ART-P X-ray telescope  which has an energy range of 4 to 60 KeV. 

 

1.1.3. Visible radiation detection 

Visible radiation (VIS) refer to the wavelength range between 400 nm and 800 nm, which can 

be perceived by the human eye. One of the challenges with visible radiation is that it gets 

scattered due to earth’s atmosphere therefore while building a big optical telescope we 

choose place which is high on altitude so that the thickness of atmosphere above our field of 

vision gets low. 

Gran Telescopio Canarias is one of the famous visible band reflecting type telescope located 

in Spain. 

https://en.wikipedia.org/wiki/Cherenkov_radiation
https://www.researchgate.net/profile/Subir_Bhattacharyya
https://en.wikipedia.org/wiki/Granat#ART-P
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1.1.4. Infrared detection 

Photons in energy range 0.12-50 keV constitute the infrared spectrum. Ground-based 

telescopes have limitations because water vapour in the Earth's atmosphere absorbs infrared 

radiation. Ground-based infrared telescopes tend to be placed on high mountains and in very 

dry climates to improve visibility. So most infrared telescopes are also space based. 

Wide-field Infrared Survey Explorer (WISE) is an NASA infrared-wavelength astronomical 

space telescope launched in December 2009. 

 

1.1.5. Radio detection 

Radio waves are a type of electromagnetic radiation with wavelengths in the electromagnetic 

spectrum longer than infrared light. Radio waves have frequencies as high as 300 gigahertz 

(GHz) to as low as 30 hertz (Hz).  

Arecibo radio telescope located at Puerto Rico is one of the many ground based radio telescopes 

present. 

 

 

2. Synchrotron Emission 

 

Synchrotron emission is one of the non-thermal radiative processes responsible for high energy 

radiations that are bombarded on our earth’s atmosphere by celestial sources. Synchrotron 

process is similar to the cyclotron process, except in synchrotron process the charged particles 

are moving at a relativistic speed whereas in cyclotron process the charged particles are moving 

in non-relativistic speeds. Therefore, we have to take relativistic effect in account when dealing 

with synchrotron emissions. The radiation emitted by synchrotron process is also subjected to 

beaming effect and so that is also needed to take into account when we calculate the spectrum 

of that radiation. 

In this section, we will calculate and find out how does the power of synchrotron radiation 

emitted by an electron when travelling in uniform and non-uniform magnetic fields, changes. 

 

 

2.1. Constant magnetic field 

Let we have an electron which is moving in a constant magnetic field having magnetic field 

vector 𝑩 and let we don’t have any external electric field in the region. The electron will feel 

the Lorentz force due to the magnetic field in that region, 

https://en.wikipedia.org/wiki/Water_vapor
https://en.wikipedia.org/wiki/NASA
https://en.wikipedia.org/wiki/Infrared
https://en.wikipedia.org/wiki/Astronomy
https://en.wikipedia.org/wiki/Space_observatory
https://en.wikipedia.org/wiki/Electromagnetic_radiation
https://en.wikipedia.org/wiki/Wavelength
https://en.wikipedia.org/wiki/Electromagnetic_spectrum
https://en.wikipedia.org/wiki/Electromagnetic_spectrum
https://en.wikipedia.org/wiki/Infrared
https://en.wikipedia.org/wiki/Frequencies
https://en.wikipedia.org/wiki/GHz
https://en.wikipedia.org/wiki/Hz
https://en.wikipedia.org/wiki/Arecibo_radio_telescope
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 𝑑(𝛾𝑚𝒗)

𝑑𝑡
=

𝑞

𝑐
(𝒗 × 𝑩) 

(1) 

   

 𝑑(𝛾𝑚𝑐2)

𝑑𝑡
= 𝑞(𝒗. 𝑬) 

(2) 

 

As the electric field is zero. 

Equation 2 suggests that 𝛾=Constant or |𝒗|=Constant. Using this in (1), 

 
𝑚𝛾

𝑑𝒗

𝑑𝑡
=

𝑞

𝑐
(𝒗 × 𝐁) 

(3) 

 

Separating the velocity components along the field 𝑣‖ and in a plane normal to the field 𝑣ꓕ  we 

have 

 𝑑𝒗∥ 

𝑑𝑡
= 0 

(4) 

   

 𝑑𝒗⊥

𝑑𝑡
=

𝑞

𝛾𝑚𝑐
(𝒗⊥ × 𝐵) 

(5) 

 

From here we can see that the solution to this equation is a circular motion of the projected 

motion on the normal plane. The combination of this circular motion and the uniform motion 

along the field is a helical motion of the particle. The frequency of the rotation or gyration can 

be calculated as, 

 𝑚𝜔2𝑟 =
𝑞

𝑐
𝑣𝐵 (6) 

   

 
𝜔𝐵 =

𝑞𝐵

𝛾𝑚𝑐
 

(7) 

 

Here B=Magnitude of vector B. 

From 4 we can see that, 

 𝑎∥ = 0 (8) 

 

From 5 we can see that, 

 
𝑎⊥ = 𝑤𝐵𝑣⊥ =

𝑞𝑣𝑏𝑣⊥

𝛾𝑚𝑐
 

(9) 
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2.1.1. Total emitted power 

The total power emitted by radiation is given by,(Rybicki and Lightman, 2004) 

 
𝑃 =

2𝑞2

3𝑐3
𝛾4(𝑎⊥

2 + 𝛾2𝑎∥
2) 

(10) 

 

From 10, 8 and 9 

 
𝑃 =

2𝑞2

3𝑚3
𝛾4

𝑞2𝐵2

𝛾2𝑚2𝑐2
𝑣⊥

2  
(11) 

 

For an isotropic distribution of velocities, it is necessary to average this expression over all 

angles for a given speed 𝛽. Let 𝛼 be the pitch angle i.e. the angle between field and velocity. 

Then we would obtain, 

 
〈𝛽⊥

2〉 =
𝛽2

4𝜋
∫ 𝑠𝑖𝑛2𝛼 𝑑Ω =  

𝛽2

4𝜋
∬ 𝑠𝑖𝑛3𝛼 𝑑𝛼𝑑𝜙 =

2𝛽2

3
 

(12) 

 

Therefore, the total power for isotropic distribution of velocities would be, 

𝑃 =
4

3
𝑟0

2𝑐𝛽2𝛾2𝐵2 

Where, (Rybicki and Lightman, 2004, chapter 3) 

𝑟0 =
𝑒2

𝑚𝑐2
 

The quantity 𝑟0 gives a measure of the ‘‘size’’ of the point charge, assuming its rest energy 

𝑚𝑐2 is purely electromagnetic in origin. For an electron 𝑟0 is called the classical electron radius 

and has a value 𝑟0 = 2.82 × 10−13𝑐𝑚. 

The critical frequency is defined as, (Rybicki and Lightman, 2004) 

 
𝜔𝑐 =

3

2

𝑞𝐵

𝑚𝑐
𝛾2𝑠𝑖𝑛𝛼 

(13) 

 

 

2.1.2. Power per unit frequency of the emitted radiation 

The electric field is a function of 𝜃 solely through the combination 𝛾𝜃, where 𝜃 is a polar angle 

about the direction of motion. This is a manifestation of the beaming effect. So we can write, 

 𝐸(𝑡) ∝ 𝐹(𝛾𝜃) (14) 
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Where 𝑡 refer to the time measured in the observers frame. We set the zero of time and the path 

length 𝑠 to be when the pulse is centered on the observer. Using the fact that, 𝜃 ≈ 𝑠
𝑎⁄  and 𝑡 ≈

(𝑠 𝑣)(1 − 𝑣 𝑐)⁄⁄  we can write that, 

 𝛾𝜃 ≈ 2𝛾(𝛾2𝜔𝐵 sin 𝛼)𝑡 ≈ 𝜔𝑐𝑡 (15) 

 

So we can write the time dependence of the electric field as, 

 𝐸(𝑡) ∝ 𝑔(𝜔𝑐𝑡) (16) 

 

The proportionality constant here is not yet known, and it may depend on any physical 

parameters except time 𝑡. This is still sufficcinet for you to derive the general depence of the 

spectrum on 𝜔. The Fourier transform of the electric field is, 

 
𝐸̂(𝜔) ∝ ∫ 𝑔(𝜔𝑐𝑡)𝑒𝑖𝜔𝑡𝑑𝑡

∞

−∞

 
(17) 

   

Changing variables of integration to 𝜉 ≡ 𝜔𝑐 we have, 

 
𝐸̂(𝜔) ∝ ∫ 𝑔(𝜉)𝑒𝑖𝜔𝜉 𝑤𝑐⁄ 𝑑𝜉

∞

−∞

 
(18) 

 

We know that is the pulse repeats on an average time scale T then we can formally write, 

 𝑑𝑊

𝑑𝜔𝑑𝑡
= 𝑇−1

𝑑𝑊

𝑑𝜔
 

(19) 

 

The spectrum 𝑑𝑊 𝑑𝜔𝑑Ω⁄  is proportional to the square of 𝐸̂(𝜔). Integrating this over solid 

angle and dividing by the orbital period, both independent of frequency, and using the above 

fact then gives us, 

 
∫

𝑑𝑊

𝑑𝑡𝑑𝜔𝑑Ω
𝑑Ω =

𝑑𝑊

𝑑𝑡𝑑𝜔
= 𝑇−1

𝑑𝑊

𝑑𝜔
≡ 𝑃(𝜔) = 𝐶1𝐹(

𝜔

𝜔𝑐
) 

(20) 

 

Where F is a dimensionless function and 𝐶1is a constant of proportionality. 

We do not know what ∫ 𝐹(𝑥)𝑑𝑥 is until we specify 𝐹(𝑥). However, we can regard it’s non-

dimensional value as arbitrary, merely setting a convention for the normalization of 𝐹(𝑥). We 

can still find the dependence of the constant 𝐶1 on all the physical parameters. 

From equation 11 and 13, 

 
𝑃 =

2𝑞4𝐵2𝛾2𝛽2𝑠𝑖𝑛2𝛼

3𝑚2𝑐3
 

(21) 

 

 
𝜔𝑐 =

3

2

𝛾2𝑞𝐵𝑠𝑖𝑛 𝛼

𝑚𝑐
 

(22) 
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So the power per unit frequency emitted by each electron for a constant magnetic field and 

highly relativistic particle(𝛽 ≈ 1) is given by, 

 
𝑃(𝜔) =  

√3

2𝜋

𝑞3𝐵𝑠𝑖𝑛 𝛼

𝑚𝑐2
𝐹 (

𝜔

𝜔𝑐
) 

(23) 

   

Where, (Rybicki and Lightman, 2004) 

𝐹(𝑥) = 𝑥 ∫ 𝐾5 3⁄ (𝑡)𝑑𝑡
∞

𝑥

 

And, 𝐾 is Bessel’s function. 

 

The choice √3 2𝜋⁄  for the non-dimensional constant has been made to anticipate the 

convention choice for the normalization of 𝐹. 

 

 

2.2. Non-uniform magnetic field 

In the previous section, we considered a constant magnetic field to derive power emitted by an 

electron in form of radiation in the magnetic field. In reality, having a constant magnetic field 

in our medium through which the electron accelerates is a very rare situation. The constant 

magnetic field is an ideal case in our universe. When we look at gamma-ray sources such as 

nebulas(ex- crab nebula), supernova remnants, faraway galaxies etc. then we find that that the 

magnetic field present at those sources is far from constant or uniform, so in order to get a 

better understanding of gamma-ray emission from real sources we need to find the emissivity 

or power per unit frequency emitted by electrons accelerating in a non uniform magnetic field. 

In this section we will find a generalisation of the equation given by equation 23 but we will 

do that by taking some assumptions and special forms of non-uniform magnetic fields along 

with necessary approximations. 

• Even when the magnetic field is not uniform, if the radius of gyration of an electron at 

a local point is less than the variation distance for the magnetic field the electron will 

feel only a single magnetic field strength around a local point, and it will tend to follow 

a circular or gyrated motion around that point and so all the above calculations done for 

a uniform magnetic field will be valid at a local point. Thus, the power per unit 

frequency for an electron at a local point will be the same as above i.e., 

 
𝑃(𝜔) =  

√3

2𝜋

𝑞3𝐵𝑠𝑖𝑛 𝛼

𝑚𝑐2
𝐹 (

𝜔

𝜔𝑐
) 

(24) 

 

 



9 
 

2.2.1 For the whole medium 

The power emitted per unit frequency by a single electron in a medium with the magnetic field 

having uniform strength but random direction can be written as(Zirakashvili and Aharonian, 

2010) 

 
𝑃(𝜔) =  

√3

2𝜋

𝑞3

𝑚𝑐2
∫ 𝐵. 𝑃(𝐵)𝑑𝐵 𝑅 (

𝜔

𝜔𝑐
) 

(25) 

 

Here 𝑅 (
𝜔

𝜔𝑐
) is defined as(Crusius, Schlickeiser, 1986) 

 
𝑅(𝑥) =

𝑥

2
∫ sin θ dθ ∫ 𝐾5 3⁄ (𝑡)𝑑𝑡

∞

𝑥 sin 𝜃⁄

𝜋

0

 
(26) 

 

The function 𝑅(𝑥) of the argument 𝑥 = 𝜔 𝜔𝑐⁄  describes synchrotron radiation of a single 

electron in a magnetic field with chaotic directions. The function 𝑅(𝑥) by definition contains 

the information about the averaging of the sin 𝛼 term of the equation 23. Therefore we don’t 

have to average sin 𝛼 term exclusively while finding the power per unit frequency for an 

electron in magnetic field which has constant magnitude but random direction. 

Crusius and Schlinkeiser(1986) derived an exact expression for 𝑅(𝜔 𝜔𝑐⁄ ) in terms of 

Whittaker’s function and it is given by, 

 
𝑅(𝑥) =

1

2
𝜋𝑥 [𝑊

0,
4
3
(𝑥) 𝑊

0,
1
3

(𝑥) − 𝑊1
2,

5
6

(𝑥) 𝑊−1
2 ,

5
6

(𝑥) ] 
(27) 

 

Where 𝑊𝜆,𝜇(𝑥) denotes Whittaker’s function(Abramowitz and Stegun, 1970) 

With an accuracy of several percent 𝑅(𝜔 𝜔𝑐⁄ ) can be presented in a simple analytical form 

(Zirakashvili and Aharonian 2007), 

 
𝑅(𝑥) =

1.81exp (−𝑥)

√𝑥−2 3⁄ + (3.62 𝜋⁄ )2
 

(28) 

 

Where 𝑥 =
𝜔

𝜔𝑐
. 

 

 

2.2.2 Special case of magnetic field distribution 

Now we will consider a special magnetic field probability distribution in order to calculate the 

power per unit frequency emitted by electrons travelling in that magnetic field.  

Many of the supernova remnants that are responsible for synchrotron emission that we observe 

have turbulent mediums. In a turbulent medium, the magnetic field is not uniform and is 
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described by a probability distribution 𝑃(𝐵). The probability distribution found in numerical 

simulations of the non-resonant streaming instability can be written in a simple analytical 

form(Zirakashvili and Ptuskin,2008) 

 
𝑃(𝐵) =

6𝐵

𝐵𝑟𝑚𝑠
2

exp (−√6𝐵 𝐵𝑟𝑚𝑠)⁄  
(29) 

 

 

Figure 2: Magnetic field probability density given by the equation 23. Here we have chosen 𝐵𝑟𝑚𝑠=1 G. 

We will consider this probability distribution for our further calculations. This magnetic field 

probability distribution is relevant because in real sources this type of probability distribution 

is common and this will provide us with an expression which is more close to the real situation 

than the expression we got by using constant magnetic field. 

The synchrotron emission of a single electron in a magnetic field with a probability distribution 

𝑃(𝐵)(as given above) is described by the function 𝑅1(𝑥) such that, 

 
𝑅1(𝑥) = ∫ 𝐵. 𝑃(𝐵). 𝑅(𝑥)𝑑𝑥 

(30) 

 

Where 𝑥 =
𝜔

𝜔𝑐
. 

Using equations 29 in 30 we can see that, 
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𝑅1(𝑥) = ∫ 𝐵. [

6𝐵

𝐵𝑟𝑚𝑠
2

exp (−√6𝐵 𝐵𝑟𝑚𝑠) ⁄ ] 𝑑𝐵 𝑅(𝑥)  

 

(31) 

 
𝑅1(𝑥) = ∫  

6𝐵2

𝐵𝑟𝑚𝑠
2

exp (−√6𝐵 𝐵𝑟𝑚𝑠) 𝑑𝐵 𝑅(𝑥)⁄   
(32) 

 

Let 𝑦 =
𝐵

𝐵𝑟𝑚𝑠
. 

 
𝑅1(𝑥) = ∫ 6𝑦2 exp(−√6𝑦) . 𝐵𝑟𝑚𝑠𝑑𝑦 𝑅(𝑥) 

(33) 

 

 
𝑅1(𝑥) = ∫ 6𝑦2 exp(−√6𝑦) 𝑑𝑦 𝑅 (

𝑥

𝑦
) 

(34) 

 

From 25 and 34 we can see, 

 
𝑃(𝜔) =  

√3

2𝜋

𝑞3

𝑚𝑐2
∫ 𝑦2𝑅(𝑥 𝑦⁄ ) exp(−√6𝑦) 𝑑𝑦 

(35) 

 

There is an analytical approximation for the function 𝑅1(𝑥),(Zirakashvili and Aharonian, 

2010) 

 𝑅1(𝑥) = 𝑎𝑥1 3⁄ (1 + 𝑏𝑥1 2⁄ )
11 6⁄

. exp (𝑐𝑥1 2⁄ ) (36) 

 

Where a=1.50, b=1.53, c=−961 4⁄  

Using equation 36 in 35, 

 
𝑃(𝜔) =  

√3

2𝜋

𝑞3

𝑚𝑐2
[𝑎𝑥1 3⁄ (1 + 𝑏𝑥1 2⁄ )

11 6⁄
. exp (𝑐𝑥1 2⁄ )] 

 

(37) 

 
𝑃(𝜔) =  

√3

2𝜋

𝑞3

𝑚𝑐2
{𝑎 (

𝜔

𝜔𝑐
)

1 3⁄

(1 + 𝑏 (
𝜔

𝜔𝑐
)

1 2⁄

)

11 6⁄

. exp (𝑐 (
𝜔

𝜔𝑐
)

1 2⁄

)} 
(38) 

 

 

2.2.3 For an electron distribution 

Now after calculating everything for a single electron we would like to move further and 

calculate for an electron distribution. 

 

 
𝑃(𝜔) =  

√3

2𝜋

𝑞3

𝑚𝑐2
∫ 𝐵. 𝑃(𝐵)𝑑𝐵 ∫ 𝑁(𝛾) 𝑅 (

𝜔

𝜔𝑐
) 𝑑𝛾 

(39) 
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Where 𝑁(𝛾)=Electron number density 

 

2.2.4 Special case of electron distribution 

We will calculate this for a special case in which we have 𝑁0 number of monoenergetic 

electrons with energy 𝛾0𝑚𝑒𝑐2. So we have, 

 𝑁(𝛾) =  𝑁0𝛿(𝛾 − 𝛾0) (40) 

 

Using equations 38, 39 and 40 we can write, 

 
𝑃(𝜔) =  

√3

2𝜋

𝑞3

𝑚𝑐2
∫ 𝑁0𝛿(𝛾

− 𝛾0) [𝑎 (
𝜔

𝜔𝑐
)

1 3⁄

(1

+ 𝑏 (
𝜔

𝜔𝑐
)

1 2⁄

)

11 6⁄

exp (𝑐 (
𝜔

𝜔𝑐
)

1 2⁄

)]  𝑑𝛾 

(41) 

 

𝑃(𝜔) =  
√3

2𝜋

𝑞3

𝑚𝑐2 ∫ 𝑁0𝛿(𝛾

− 𝛾0) [𝑎 (
2𝑚𝑐𝜔

3𝛾2𝑞𝐵
)

1 3⁄

(1 + 𝑏 (
2𝑚𝑐𝜔

3𝛾2𝑞𝐵
)

1 2⁄

)

11 6⁄

exp (𝑐 (
2𝑚𝑐𝜔

3𝛾2𝑞𝐵
)

1 2⁄

)]  𝑑𝛾 

 

 

𝑃(𝜔) =  
√3

2𝜋

𝑞3

𝑚𝑐2
𝑁0 {𝑎 (

2𝑚𝑐𝜔

3𝛾0
2𝑞𝐵

)

1 3⁄

(1

+ 𝑏 (
2𝑚𝑐𝜔

3𝛾0
2𝑞𝐵

)

1 2⁄

)

11 6⁄

exp (𝑐 (
2𝑚𝑐𝜔

3𝛾0
2𝑞𝐵

)

1 2⁄

)} 

(42) 

 

 

𝑃(𝜔) =  
√3

2𝜋

𝑞3

𝑚𝑐2
𝑁0 {𝑎 (

𝜔

(𝜔𝑐)𝛾0

)

1 3⁄

(1

+ 𝑏 (
𝜔

(𝜔𝑐)𝛾0

)

1 2⁄

)

11 6⁄

exp (𝑐 (
𝜔

(𝜔𝑐)𝛾0

)

1 2⁄

)} 

(43) 
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Where a=1.50, b=1.53, c=−941 4⁄ , (𝜔𝑐)𝛾0
=

3𝑞𝐵𝛾0
2

2𝑚𝑐
 

 

 

 

Figure 3: Power emitted per unit frequency in a Synchrotron emission. The dashed line represents a 
magnetic field with non-uniform magnetic field strength(Magnitude of vector B), and the dotted line 

represents a magnetic field with uniform magnetic field strength(Magnitude of vector B). Here we 

took 𝑁0 = 1044i.e total number of electrons per unit volume is 1044. 

 

 

3. Discussion and conclusions 
 

We can see that there are three different functions that are used in the calculations as a 

replacement of one another. These functions are 𝐹 (
𝜔

𝜔𝑐
) , 𝑅 (

𝜔

𝜔𝑐
) and 𝑅1 (

𝜔

𝜔𝑐
). 

The following paragraphs will compile all the information that is already given in the previous 

sections but in a more accessible and organised manner. 

𝐹 (
𝜔

𝜔𝑐
) => This function is derived for the case of constant magnetic field i.e. constant in both 

magnitude and direction(Rybicki and Lightman). It’s a dimensionless function and helps in 

describing the power per unit frequency for a single electron in a constant magnetic field.  
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𝑅 (
𝜔

𝜔𝑐
) => This function is derived for the case of a magnetic field which has a constant 

magnitude but a random direction of orientation(Crusius and Schlickeiser, 1986). This function 

helps in describing power per unit frequency by a single electron in a large scale random 

magnetic field. 

 𝑅1 (
𝜔

𝜔𝑐
) => This function is derived in case of a magnetic field which has a continuous 

probability distribution. This function is defined for a particular magnetic probability 

distribution. For our case it is defined for a magnetic probability distribution defined by 

equation 29. This helps in describing the power per unit frequency by a single electron in a 

magnetic field which has non uniform magnitude as well as random direction. 

 

Figure 3 shows us that the power spectrum changes on changing the behaviour of the magnetic 

field from uniform to non-uniform.  

We can see in the graph that the peak of the two curves are different or we can say that the peak 

of the curve for the non-uniform case is shifted towards lower frequency in comparison to the 

peak of the curve for uniform magnetic field. The peak in the non-uniform case is lower than 

the uniform case. We can also see that at one particular point the two plots intersect each other. 

This indicates that there exists a value of 𝜔 such that an identical electron in the two different 

fields will emit radiation with the same power. We can also see that the tail(part of the curve 

after the intersection point) of the curve for the non-uniform magnetic field falls more slowly 

than the curve for the uniform field. It indicates that if we have two electrons with same energy 

such that one is moving in a uniform magnetic field and the other is moving in the non-uniform 

magnetic field, then we will observe that the electron moving in the non-uniform field will emit 

more photons as compared to the identical electron moving in a uniform field. 

 

4. Future outlook 

This work has much potential to be carried out further, and there are a lot of things that can be 

added to this work. The method that I have followed while carrying out this project opens many 

possibilities for one to find many things by just playing with the formulation and mathematics 

involved. 

One of the things that can be improved in this project is the use of a better electron number 

density. In this project, I have assumed that we have a medium filled with mono-energetic 

electrons. In real cases, this is not possible. It’s an ideal case that we will have all the electrons 

with the same energy in a medium. In real situations, it has been found out that the power law 

distribution is very common or at least is a very good approximation to the actual electron 

distribution. One can improve on this work by considering power law distribution instead of 

the Dirac delta function that I used. One can also try solving the equations for other exotic 

electron distributions to find other interesting observations. 

The magnetic field probability that I used in this work is a good approximation for many real 

cases, but one can also improve on that. By using the basic equation, 25 one can find power 

per unit frequency for any source exclusively. By finding the exact or the most perfect 
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approximation of P(B) for a source and plugging that in 25, one can find an exclusive 

expression for that particular source which will theoretically fit the data from that source most 

accurately. 
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